Data Science
Publikationen
Adamakis, E., Boch, M., Bampoulidis, A., Margetis, G., Gindl, S., Stephanidis, C. (2023). Visualizing the risks of de-anonymization in high-dimensional data. 6th International Conference on Information Technology & Systems (ICITS’23).
Boch, M., Adamakis, E., Gindl, S., Margetis, G., Stephanidis, C. (2023). Anonymisation Methods for High-Dimensional and Complex Data based on Privacy Models for the Prevention of De-Anonymization Attacks. 11st World Conference on Information Systems and Technologies (WorldCIST’23).
Duh, D., Goschlberger, B., Boch, M., Graser, G., Gross, M., Pitzschke, A., & Sengschmid, E. (2023). Design and Development of a Social Micro-Learning Platform in the context of Tactile Learning Materials for Students with Visual Impairments. In The 15th International Conference on Education Technology and Computers (pp. 189-194).
Boch, M.; Gindl, S.; Barnett, A.; Margetis, G.; Mireles, V.; Adamakis, E. and Knoth, P. (2022). A Systematic Review of Data Management Platforms. In: WorldCIST’22, 12-14 Apr 2022, Budva, Montenegro.
Ghafourian, Y. (2022). Relevance Models Based on the Knowledge Gap. In Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022, Proceedings, Part II (pp. 488-495).
Kusa, W., & Ghafourian, Y. DOSSIER at TREC 2021 Clinical Trials Track.
Taha, A. A., Papariello, L., Bampoulidis, A., Knoth, P., and Lupu, M. (2020). Formal analysis and estimation of chance in datasets based on their properties. IEEE Transactions on Knowledge and Data Engineering,xx(x):xx–xx.
Helminger, L., Kales, D., Rechberger, C., Walch, R., Bampoulidis, A., and Bruni, A. Privately Connecting Mobility to Infectious Diseases via Applied Cryptography. In IEEE Symposium on Security and Privacy
Lode, A. U. J., Alon, O. E., Bastarrachea-Magnani, M. A., Bhowmik, A., Buchleitner, A., Cederbaum, L. S., Chitra, R., Fasshauer, E., de Forges de Parny, L., Haldar, S. K., Leveque, C., Lin, R., Madsen, L. B., Molignini, P., Papariello, L., Schäfer, F., Strelstov, A. I., Tsatsos, M. C., and S. E. Weiner (2020). MCTDH-X: The multiconfigurational time-dependent Hartree method for indistinguishable particles high-performance computation project. In High Performance Computing in Science and Engineering. Springer, Cham.
Livne, M., Rieger, J., Aydin, O. U., Taha, A. A., Akay, E. M., Kossen, T., … & Madai, V. I. (2019). A U-Net deep learning framework for high performance vessel segmentation in patients
with cerebrovascular disease. Frontiers in neuroscience, 13, 97.
Lupu, M. (2019). Keeping on the good path.
Lupu, M., & List, J. (2018). Conferences 2017. World Patent Information, 52, 68-71.