Data Science

Publikationen

Ballhausen T., Gindl S. & Tauber M. (2023): Curatorial Companionship: A New Framework for Managing High-quality Digital Cultural Content and Data. In: ERCIM News No. 133.

Adamakis, E., Boch, M., Bampoulidis, A., Margetis, G., Gindl, S., Stephanidis, C. (2023). Visualizing the risks of de-anonymization in high-dimensional data. 6th International Conference on Information Technology & Systems (ICITS’23).

Boch, M., Adamakis, E., Gindl, S., Margetis, G., Stephanidis, C. (2023). Anonymisation Methods for High-Dimensional and Complex Data based on Privacy Models for the Prevention of De-Anonymization Attacks. 11st World Conference on Information Systems and Technologies (WorldCIST’23).

Duh, D., Goschlberger, B., Boch, M., Graser, G., Gross, M., Pitzschke, A., & Sengschmid, E. (2023). Design and Development of a Social Micro-Learning Platform in the context of Tactile Learning Materials for Students with Visual Impairments. In The 15th International Conference on Education Technology and Computers (pp. 189-194).

Boch, M.; Gindl, S.; Barnett, A.; Margetis, G.; Mireles, V.; Adamakis, E. and Knoth, P. (2022). A Systematic Review of Data Management Platforms. In: WorldCIST’22, 12-14 Apr 2022, Budva, Montenegro.

Ghafourian, Y. (2022). Relevance Models Based on the Knowledge Gap. In Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022, Proceedings, Part II (pp. 488-495).

Ningtyas, A.M., El-Ebshihy, A., Herwanto, G.B., Piroi, F., Hanbury, A. (2022). Leveraging Wikipedia Knowledge for Distant Supervision in Medical Concept Normalization. In: Conference and Labs of the Evaluation Forum (CLEF) 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham.

Taha, A. A., Papariello, L., Bampoulidis, A., Knoth, P., and Lupu, M. (2020). Formal  analysis  and  estimation  of  chance  in  datasets  based  on their  properties. IEEE  Transactions  on  Knowledge  and  Data  Engineering,xx(x):xx–xx.

Hilbert,  A.,  Madai,  V.  I.,  Akay,  E.  M.,  Aydin,  O.  U.,Behland, J., Sobesky, J., Galinovic, I., Khalil, A. A., Taha, A. A., Wuerfel,J., Dusek, P., Niendorf, T., Fiebach, J. B., Frey, D., and Livne, M. (2020).Brave-net:   Fully  automated  arterial  brain  vessel  segmentation  in  patientswith cerebrovascular disease.Frontiers in Artificial Intelligence, 3:78.

Helminger, L., Kales, D., Rechberger, C., Walch, R., Bampoulidis, A., and Bruni, A. Privately Connecting Mobility to Infectious Diseases via Applied Cryptography. In IEEE Symposium on Security and Privacy

Papariello, L., Bampoulidis, A., and Lupu, M. (2020). On the Replicability of Combining Word Embeddings and Retrieval Models. In European Conference on Information Retrieval (pp. 50-57). Springer, Cham.

Bampoulidis, A., Bruni, A., Markopoulos, I., and Lupu, M. (2020). Practice and Challenges of (De-) Anonymisation for Data Sharing. In International Conference on Research Challenges in Information Science (pp. 515-521). Springer, Cham.

Lin, R., Molignini, P., Papariello, L., Tsatsos, M. C., Leveque, C., Weiner, S. E., Fasshauer, E., Chitra, R., and Lode, A. U. J. (2020). MCTDH-X: The multiconfigurational time-dependent Hartree method for indistinguishable particles software. Quantum Science and Technology 5 024004.

Lode, A. U. J., Lin, R., Büttner, M., Papariello, L., Leveque, C., Chitra, R., Tsatsos, M. C., Jaksch, D., and Molignini, P. (2020). Optimized Observable Readout from Single-shot Images of Ultracold Atoms via Machine Learning. arXiv:2010.14510.

Lode, A. U. J., Alon, O. E., Bastarrachea-Magnani, M. A., Bhowmik, A., Buchleitner, A., Cederbaum, L. S., Chitra, R., Fasshauer, E., de Forges de Parny, L., Haldar, S. K., Leveque, C., Lin, R., Madsen, L. B., Molignini, P., Papariello, L., Schäfer, F., Strelstov, A. I., Tsatsos, M. C., and S. E. Weiner (2020). MCTDH-X: The multiconfigurational time-dependent Hartree method for indistinguishable particles high-performance computation project. In High Performance Computing in Science and Engineering. Springer, Cham.

Bampoulidis, A., & Lupu, M. (2019). An Abstract View on the De-anonymization Process. arXiv preprint arXiv:1902.09897. 

Bampoulidis, A., Markopoulos, I., & Lupu, M. (2019, October). PrioPrivacy: A Local Recoding K-Anonymity Tool for Prioritised Quasi-Identifiers. In IEEE/WIC/ACM International Conference on Web Intelligence-Companion Volume (pp. 314-317). 

Brassey, J., Price, C., Edwards, J., Zlabinger, M., Bampoulidis, A., & Hanbury, A. (2019). Developing a fully automated evidence synthesis tool for identifying, assessing and collating the evidence. BMJ Evidence-Based Medicine, bmjebm-2018.

Livne,  M.,  Rieger,  J.,  Aydin,  O.  U.,  Taha,  A.  A.,  Akay,E. M., Kossen, T., Sobesky, J., Kelleher, J. D., Hildebrand, K., Frey, D., andMadai, V. I. (2019).  A u-net deep learning framework for high performance vessel  segmentation  in  patients  with  cerebrovascular  disease.Frontiers  inNeuroscience, 13:97.

Lipani, A., Losada, D. E., Zuccon, G., & Lupu, M. (2019). Fixed-Cost Pooling Strategies. IEEE Transactions on Knowledge and Data Engineering. 

Livne, M., Rieger, J., Aydin, O. U., Taha, A. A., Akay, E. M., Kossen, T., … & Madai, V. I. (2019). A U-Net deep learning framework for high performance vessel segmentation in patients
 with cerebrovascular disease. Frontiers in neuroscience, 13, 97. 

Lupu, M. (2019). Keeping on the good path. 

Lupu, M., Bampoulidis, A., & Papariello, L. (2019, July). A Horizontal Patent Test Collection. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1213-1216). 

Lupu, M., & List, J. (2018). Conferences 2017. World Patent Information, 52, 68-71. 

Lupu, M., Papariello, L., Alentorn, R., Baycroft, M., & List, J. (2019). The WPI patent test collection. World Patent Information, 56, 78-85. 

Hofstätter, S., Rekabsaz, N., Lupu, M., Eickhoff, C., & Hanbury, A. (2019, April). Enriching Word Embeddings for Patent Retrieval with Global Context. In European Conference on Information Retrieval (pp. 810-818). Springer, Cham. 

Schlarb, S., Karl, R., King, R., Lampoltshammer, T. J., Thurnay, L., Ivanschitz, B. P., & Mireles, V. (2019, June). Using Blockchain Technology to Manage Membership and Legal Contracts in a Distributed Data Market. In 2019 Sixth International Conference on Software Defined Systems (SDS) (pp. 272-277). IEEE. 

Taha, A. A., Bampoulidis, A., & Lupu, M. (2019). Chance influence in datasets with a large number of features. In Data Science–Analytics and Applications (pp. 21-26). Springer Vieweg, Wiesbaden.